skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rey, Ana Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Long-range and anisotropic dipolar interactions profoundly modify the dynamics of particles hopping in a periodic lattice potential. We report the realization of a generalizedt-Jmodel with dipolar interactions using a system of ultracold fermionic molecules with spin encoded in the two lowest rotational states. We independently tuned the dipolar Ising and spin-exchange couplings and the molecular motion and studied their interplay on coherent spin dynamics. Using Ramsey spectroscopy, we observed and modeled interaction-driven contrast decay that depends strongly both on the strength of the anisotropy between Ising and spin-exchange couplings and on motion. This study paves the way for future exploration of kinetic spin dynamics and quantum magnetism with highly tunable molecular platforms in regimes that are challenging for existing numerical and analytical methods. 
    more » « less
    Free, publicly-accessible full text available April 25, 2026
  2. We investigate the quantum many-body dynamics of bosonic atoms hopping in a two-leg ladder with strong on-site contact interactions. We observe that when the atoms are prepared in a staggered pattern with pairs of atoms on every other rung, singlon defects, i.e., rungs with only one atom, can localize due to an emergent topological model, even though the underlying model in the absence of interactions admits only topologically trivial states. This emergent topological localization results from the formation of a zero-energy edge mode in an effective lattice formed by two adjacent chains with alternating strong and weak hoping links (Su-Schrieffer-Heeger chains) and opposite staggering which interface at the defect position. Our findings open the opportunity to dynamically generate nontrivial topological behaviors without the need for complex Hamiltonian engineering. Published by the American Physical Society2025 
    more » « less
  3. Free, publicly-accessible full text available January 23, 2026
  4. We study the combined effects of measurements and unitary evolution on the preparation of spin squeezing in an ensemble of atoms interacting with a single electromagnetic field mode inside a cavity. We derive simple criteria that determine the conditions at which measurement based entanglement generation overperforms unitary protocols. We include all relevant sources of decoherence and study both their effect on the optimal spin squeezing and the overall size of the measurement noise, which limits the dynamical range of quantum-enhanced phase measurements. Our conclusions are relevant for state-of-the-art atomic clocks that aim to operate below the standard quantum limit. Published by the American Physical Society2024 
    more » « less
  5. Trapped-ion systems are a leading platform for quantum information processing, but they are currently limited to 1D and 2D arrays, which imposes restrictions on both their scalability and their range of applications. Here, we propose a path to overcome this limitation by demonstrating that Penning traps can be used to realize remarkably clean bilayer crystals, wherein hundreds of ions self-organize into two well-defined layers. These bilayer crystals are made possible by the inclusion of an anharmonic trapping potential, which is readily implementable with current technology. We study the normal modes of this system and discover salient differences compared to the modes of single-plane crystals. The bilayer geometry and the unique properties of the normal modes open new opportunities—in particular, in quantum sensing and quantum simulation—that are not straightforward in single-plane crystals. Furthermore, we illustrate that it may be possible to extend the ideas presented here to realize multilayer crystals with more than two layers. Our work increases the dimensionality of trapped-ion systems by efficiently utilizing all three spatial dimensions, and it lays the foundation for a new generation of quantum information processing experiments with multilayer 3D crystals of trapped ions. Published by the American Physical Society2024 
    more » « less
  6. Quantum sensing and metrology use coherent superposition states of quantum systems to detect and measure physical effects of interest. Their sensitivity is typically limited by the standard quantum limit, which bounds the achievable precision in measurements involving nominally identical but uncorrelated quantum systems. Fully quantum metrology involves entanglement in an array of quantum systems, enabling uncertainty reduction below the standard quantum limit. Although ultracold atoms have been widely used for applications such as atomic clocks or gravitational sensors, molecules show higher sensitivity to many interesting phenomena, including the existence of new, symmetry-violating forces mediated by massive particles. Recent advancements in molecular cooling, trapping and control techniques have enabled the use of molecules for quantum sensing and metrology. This Review describes these advancements and explores the potential of the rich internal structure and enhanced coupling strengths of molecules to probe fundamental physics and drive progress in the field. 
    more » « less
  7. Abstract We propose protocols for the creation of useful entangled states in a system of spins collectively coupled to a bosonic mode, directly applicable to trapped-ion and cavity QED setups. The protocols use coherent manipulations of the resonant spin-boson interactions naturally arising in these systems to prepare spin squeezed states exponentially fast in time. The resonance condition harnesses the full spin-boson coupling and thus avoids the slower timescales when operating in the off-resonance regime. We demonstrate the robustness of the protocols by analyzing the effects of natural sources of decoherence in these systems and show their advantage compared to more standard slower approaches where entanglement is generated with off-resonant spin-boson interactions. 
    more » « less